Geometric connections and geometric Dirac operators on contact manifolds

نویسنده

  • Liviu I. Nicolaescu
چکیده

We construct some natural metric connections on metric contact manifolds compatible with the contact structure and characterized by the Dirac operators they determine. In the case of CR manifolds these are invariants of a fixed pseudo-hermitian structure, and one of them coincides with the Tanaka–Webster connection.  2005 Elsevier B.V. All rights reserved. MSC: 53B05; 53C15; 53D10; 53D15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On index formulas for manifolds with metric horns

In this paper we discuss the index problem for geometric differential operators (Spin-Dirac operator, Gauß-Bonnet operator, Signature operator) on manifolds with metric horns. On singular manifolds these operators in general do not have unique closed extensions. But there always exist two extremal extensions Dmin and Dmax. We describe the quotient D(Dmax)/D(Dmin) explicitely in geometric resp. ...

متن کامل

Some remarks on the geometric quantization of contact manifolds

Suppose that (M,E) is a compact contact manifold, and that a compact Lie group G acts on M transverse to the contact distribution E. In [14], we defined a G-transversally elliptic Dirac operator Db / , constructed using a Hermitian metric h and connection ∇ on the symplectic vector bundle E → M , whose equivariant index is well-defined as a generalized function on G, and gave a formula for its ...

متن کامل

Clifford Algebroids and Nonholonomic Einstein–Dirac Structures

We propose a new framework for constructing geometric and physical models on spacetimes provided with Lie algebroid symmetry, i.e. manifolds provided with additional anchor and generalized Lie algebra commutator structures. The approach is related to the geometry of moving nonholonomic frames with associated nonlinear connections. A strict application of such geometric methods to spinor fields ...

متن کامل

Generalized Dirac Operators on Nonsmooth Manifolds and Maxwell’s Equations

We develop a function theory associated with Dirac type operators on Lipschitz subdomains of Riemannian manifolds. The main emphasis is on Hardy spaces and boundary value problems, and our aim is to identify the geometric and analytic assumptions guaranteeing the validity of basic results from complex function theory in this general setting. For example, we study PlemeljCalderón-Seeley-Bojarski...

متن کامل

The Srni Lectures on Non-integrable Geometries with Torsion

This review article intends to introduce the reader to non-integrable geometric structures on Riemannian manifolds and invariant metric connections with torsion, and to discuss recent aspects of mathematical physics—in particular superstring theory—where these naturally appear. Connections with skew-symmetric torsion are exhibited as one of the main tools to understand non-integrable geometries...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005